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Goal

To create a next generation conceptual archive architecture 
supported by advanced technology that is able to:
• Increase data utilization by hosting and applying IDU technologies 

such as: 
– Information and knowledge extraction

– Automated data object identification and classification

– Intelligent user interfacing, and system management

– Distributed computing and data storage

• Automate the transformation of data to information and knowledge
allowing the user to focus on research/applications rather than 
data and data system manipulation

• Exploit new and emerging technologies as they become available
• Incorporate lessons learned from existing archives
• Accommodate new data intensive missions without redesign or 

restructuring



Technical Objectives

• Formulate concepts and architectures that support data 
archiving for NASA science research and applications in 
the 10 to 20 year time frame

• Focus on architectural strategies that will support 
intelligent processes and functions

• Identify and characterize science and applications 
scenarios that drive intelligent archive requirements

• Assess technologies and research that will be needed for 
the development of an intelligent archive

• Identify and characterize potential IDU research projects 
that will be needed to develop and create an intelligent 
archive 



The Problem
• Most of NASA’s archived data is spatial (images) and temporal in

nature with minimal information about data content

• NASA’s scientific data holding are becoming voluminous
– Increasing numbers and kinds of data sources (sensors, users, new 

missions, etc.) are generating large quantities of data and information

– Model data volumes are expected to rival remotely sensed data

• Presently image analysis and feature identification can only be 
successfully performed by human experts

– Human-based strategies for managing, searching, identifying, and creating 
required data and information for research purposes are time-consuming 
and cost-prohibitive for large archives

– Acquisition and accumulation rates continue to outpace the ability to 
manage, discover, and exploit scientifically meaningful data, information 
and knowledge

• Extremely difficult to automate the data, information, & 
knowledge extraction processes 



The Problem (Continued)

• Existing archives neither have the architecture nor technologies to 
support automated intelligent data understanding

• Archives and service providers are distributed and belong to 
diverse institutions with their own data organization and access
mechanisms

• Contributes to heterogeneous data, information and knowledge
– Interoperability is a significant driver

• Tools to support automated identification, and classification of
objects and events are being developed but must be matched with 
complementary archive architectures to be successful

• Existing archives suffer from the fact that
– Every generation tends to use different technologies and architectures that 

are driven by schedule and cost

– Software is hardware and application specific



What Is An Intelligent Archive (IA)?

• An IA includes all items stored to support “end-to-end” research and 
applications scenarios

• Stored items include: 
– Data, information and knowledge
– Software and processing needed to manage holdings and improve self-

knowledge (e.g., data-mining to create robust content-based metadata)
– Interfaces to algorithms and physical resources to support acquisition of 

data and their transformation into information and knowledge (could be 
invoked in push or pull mode)

– Architecture expected to be highly distributed so that it can easily adapt to 
include new elements as data and service providers

• Will have evolved functions beyond that of a traditional archive
– The “borders” of an intelligent archive are intrinsically fuzzy, but may be 

determined in practice by institutional structure and expectations
– Will be based on and exploit technologies in the 10 to 20 year time range

• Will be highly adaptable so as to meet the evolving needs of science research 
and applications in terms of data, information and knowledge



Data, Information and Knowledge
Data: output from a sensor, with little or no interpretation applied

• Examples: Scientific instrument measurements, market past performance

Information: a summarization, abstraction or transformation of 
data that increases our understanding of the physical world

• Examples: Results after performing transformations by data mining, 
segmentation, classification, etc., such as a Landsat scene spatially indexed 
based on content , assigned a “class” value and subset for an application, or 
National Weather Service storm monitoring fused with a GIS of the spatial 
location of the Washington D.C. Beltway.

• Knowledge: a summarization, abstraction or transformation of information 
that allows our understanding of the physical world

• Examples: Predictions from model forward runs, published papers, output of 
heuristics or other techniques applied to information to answer a “what if” 
question such as “What will the accident rate be if an ice storm hits the 
Washington D.C. Beltway between Chevy Chase and the Potomac crossing at 7 
a.m.?”
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NASA Relevance
• Earth Science has large archive holdings that are growing at an ever increasing 

rate
– EOSDIS archive just exceeded one petabyte in February of this year
– New missions (e.g., Aqua) will put additional strains on existing archive services or 

require additional services
– User interfacing and data selection are a challenge due to increasing volumes of data 

and the distributed nature of archives

• Space Science’s virtual observatory archiving is expected to be as demanding 
as Earth science’s in the near future

– Virtual observatory’s data volumes will match Earth science’s as the program 
matures

– Data sources and archives will be distributed (expected to be located close to land 
based observing instruments)

• The Intelligent Archive Project is formulating strategies and architectures to 
help resolve the challenges in archiving for Earth and space sciences that result 
from 

• Ever increasing amount of data volumes and rates 
– Increasing numbers of missions and data sources
– Increasing demand to support greater numbers of scientists and areas of research
– Heterogeneous and distributed environment of data providers/users
– Complexity of data, information and knowledge



Preliminary Findings
• Future missions will significantly increase the amount and kind of data 

to be archived and managed
• Expect large numbers of distributed users with personal computing and 

storage resources that could become a source of data to be archived
• Functions that will need automation and infusion of intelligence

– Data acquisition, cataloging and characterization
– Production operations
– Transformation of data into information
– User (human and computer) access and communication
– Forecast and prediction model support
– Storage and supporting management strategies
– System management, communications and planning

• Science missions will commonly include models and simulations
• Modeling systems may become an “archive user” that will task sensors, 

in near real time, to collect data to support simulation analysis,
• Models could request sensors for specific acquisitions of data 

– Requested data will need to be processed in a timely manner
– The number of sensors that could be tasked may be large in number, and distributed



Preliminary Findings (Cont.)

• Use cases have provided valuable information related to archive 
functionality, scope, and performance 

– Two use cases have been evaluated; precision farming and weather

• Assessed and characterized technology evolution over next 20 years 
– Expect a major paradigm shift (See diagram next viewgraph) which will have 

a fundamental impact on functionality and performance

• Formulated architectures that relate technologies to core functions
• Topology and texture of architecture very likely to be adaptable and 

evolutionary
• Archives may store only limited levels of data and produce virtual data 

products on-demand
• Existing archive systems will need to be integrated into a future 

intelligent archive
• Intelligent archive will utilize distributed computing to extent possible



Technology Forecast Timeline
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Precision Agriculture Scenario
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Precision Agriculture Support Information
Data Volumes

• Estimated 1.5 TB per year for a 1000-acre farm, (including satellite and airborne remote 
sensing data, in situ data, visualizations, modeling, etc.) 

• As of 2001 there were  2,158,000 farms in the U.S. (averaging 436 acres each)*
• Total acreage, 9.4x108.  Result in data stream of 1.4 EB per year for all U.S. farms.

Data Sources
• Remote sensing at spatial resolutions as small as 1 foot and temporal resolutions as fine 

as 1 hour; 
• Precision weather forecasts from three hours ahead to longer-range climate predictions 

for months and years;
• Land profiles including soils, moisture, elevations, drainage patterns and water sources, 

digital ortho-photo quadrangles (images with integrated USGS topography maps), digital 
elevation models, geo-rectified spatial data, ecological zone profiles, biodiversity
inventory, local calibrations including ground truth.

• Types of analysis needed
• Planting conditions indicators, crop monitoring (growth, maturity, health and stress 

indicators), 
• Weed and pest identification and tracking, chemical and other intervention impact 

prediction and analysis, 
• Weather conditions, advance forecasts, environmental alerts, microclimate surveys, soil 

types and depths. 

* Source: Wisconsin Agricultural Statistics Service via USDA
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Precision Weather Support Information
Data Volumes

• Approximately 7.5 TB/day by 2025*

Data Sources
• Space-based, airborne and terrestrial sensors networked via fiber and wireless, 
• Large forecast models (forecast models will be approaching 100 million unique 

grid points with a million observations

Unique Features
• Modeling systems directly task sensors
• Large number of sensors
• Archive is an integral part of the science/modeling process

Types of analysis required
• Structure information in the free atmosphere every 3 hours, every 25 km 

globally, and vertically from the surface to 80 km altitude 
• Global 3D distribution of cloud height, cloud depth, aerosols, water/ice, and 

suspended precipitation rates
• Land and sea surface temperature, land surface moisture, albedo, vegetation 

type 
• Planetary boundary layer depth

* Source: Advanced Weather Prediction Technology:  NASA’s Contribution to the Operational Agencies, Vision 2025 Architecture Study



Accomplishments
• Selected and characterized two science/application scenarios -

precision weather and precision farming
• Formulated an abstract functional architecture and two conceptual 

physical architectures
• Studied GSFC DAAC user interactions and demands, proof of 

concept of knowledge feedback and its relationship to the data from 
which it was derived

• Presented paper at IEEE Mass Store Conference (College Park, MD,
April 2002)

• Submitted paper to “Future Intelligent Earth Observing Systems” 
(FIEOS) conference (Denver CO, November 2002)

• Prepared a preliminary report on work to date
• Identified additional technical issues critical to study objectives on 

which “drill-down” white papers  will be developed



Technical Significance of Progress & Expected Impact

Significance of Progress
• Have formulated a mission-relevant context for the inclusion of IDU 

technologies

• Have conceptualized architectures that will support IDU technologies

• Assessed technology progress in the 2015-2020 time frame and 
identified their impact on future IDU and IA systems

Expected Impact
• Future IA systems will be able to deal with the large data volumes and 

rates expected from future missions

• Defined systems that are able to support intelligent processes that 
extract information content from spatial data

• Defining a roadmap that will support the utilization of IDU research in the 
implementation of future mission archives



Technical Issues &Risks
Mission Drivers

• The success of future science missions will become increasingly dependent on 
data archiving services and how well information can be automatically 
extracted from data

• Future missions can be expected to use large numbers of sensors which will 
significantly increase the amount and kind of data to be archived and managed

• Data volumes continue to increase rapidly

Automated Analysis and Understanding
• Data mining is not yet able to function at human levels of performance for the 

identification and classification of features and phenomena 
• Machine learning is only marginally successful in acquiring information and 

knowledge from humans 
• Ability of IDU data mining algorithms to perform better than human experts 

remains untested 
• Commercial market tools are limited in handling complex science data



Technical Issues &Risks (Cont.)

Archiving Technologies
• Changes in storage technologies will continue to force constant refreshing of 

data in archives  
– As the data volumes increase, this will become a very costly long-term 

processing issue

• Retiring aged systems will be a problem (they have mortality) 

• Full automation of archiving function is difficult to achieve
– Science data complexity often forces significant manual intervention.
– Standardization of data models would help, but move is toward increasing 

heterogeneity since populating data models is burdensome
– Many failures stem from software errors, which are resistant to automated 

fail-over



URL Links To Research Activities

The link to the Intelligent Archive Project web site:

http://daac.gsfc.nasa.gov/IDA/
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